Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.184
Filtrar
1.
Bull Environ Contam Toxicol ; 112(4): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565801

RESUMO

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.


Assuntos
Brassica , Nanopartículas Metálicas , Nanopartículas , Cobre/toxicidade , Disponibilidade Biológica , Solo , Óxidos , Clorofila , Ácido Pentético , Nanopartículas Metálicas/toxicidade
2.
BMC Vet Res ; 20(1): 135, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570796

RESUMO

AIMS: We investigated the effects of intraperitoneal injections of titanium dioxide nanoparticles (TiO2 NPs, 100 mg/kg) for 5 consecutive days on the developmental competence of murine oocytes. Furthermore, study the effects of TiO2 NPs on antioxidant and oxidative stress biomarkers, as well as their effects on expression of apoptotic and hypoxia inducing factor-1α (HIF1A) protein translation. Moreover, the possible ameliorating effects of intraperitoneal injections of fructose (2.75 mM/ml) was examined. MATERIALS AND METHODS: Thirty sexually mature (8-12 weeks old; ~ 25 g body weight) female mice were used for the current study. The female mice were assigned randomly to three treatment groups: Group1 (G1) mice were injected intraperitoneal (ip) with deionized water for 5 consecutive days; Group 2 (G2) mice were injected ip with TiO2 NPs (100 mg/kg BW) for 5 consecutive days; Group 3 (G3) mice were injected ip with TiO2 NPs (100 mg/kg BW + fructose (2.75 mM) for 5 consecutive days. RESULTS: Nano-titanium significantly decreased expression of GSH, GPx, and NO, expression of MDA and TAC increased. The rates of MI, MII, GVBD and degenerated oocytes were significantly less for nano-titanium treated mice, but the rate of activated oocytes was significantly greater than those in control oocytes. TiO2 NPs significantly increased expression of apoptotic genes (BAX, Caspase 3 and P53) and HIF1A. Intraperitoneal injection of fructose (2.75 mM/kg) significantly alleviated the detrimental effects of TiO2 NPs. Transmission electron microscopy indicated that fructose mitigated adverse effects of TiO2 NPs to alter the cell surface of murine oocytes. CONCLUSION: Results of this study suggest that the i/p infusion of fructose for consecutive 5 days enhances development of murine oocytes and decreases toxic effects of TiO2 NPs through positive effects on oxidative and antioxidant biomarkers in cumulus-oocyte complexes and effects to inhibit TiO2-induced increases in expression of apoptotic and hypoxia inducing factors.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Feminino , Animais , Antioxidantes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Titânio/toxicidade , Oócitos , Hipóxia/metabolismo , Hipóxia/veterinária , Biomarcadores/metabolismo , Nanopartículas Metálicas/toxicidade
3.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612865

RESUMO

In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Indústrias , Tecnologia
4.
Microb Pathog ; 190: 106639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616002

RESUMO

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Compostos de Estanho , Difração de Raios X , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura , Tamanho da Partícula
5.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557120

RESUMO

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Assuntos
Cupriavidus , Nanopartículas Metálicas , Cobre/metabolismo , Ouro/toxicidade , Ouro/metabolismo , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cupriavidus/genética , Cupriavidus/metabolismo , Proteínas de Bactérias/metabolismo , Íons/metabolismo , Solo , Glutationa/metabolismo , Oxirredutases/metabolismo
6.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557019

RESUMO

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
7.
Chemosphere ; 355: 141836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561160

RESUMO

The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.


Assuntos
Hypocreales , Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Proteoma , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/toxicidade , Antibacterianos/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
8.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
9.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458532

RESUMO

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Assuntos
Nanopartículas Metálicas , Doenças Mitocondriais , Humanos , Prata/toxicidade , Prata/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias/metabolismo , Nanopartículas Metálicas/toxicidade
10.
Food Chem Toxicol ; 186: 114581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460669

RESUMO

To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Saccharomyces cerevisiae/genética , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Transporte Biológico
11.
Bull Exp Biol Med ; 176(4): 501-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491259

RESUMO

High X-ray absorption combined with photothermal properties make bismuth nanoparticles (Bi NP) a promising agent for multimodal cancer theranostics. However, the synthesis of Bi NP by the "classical" chemical methods has numerous limitations, including potential toxicity of the produced nanomaterials. Here we studied in vitro toxicity of laser-synthesized Bi NP coated with Pluronic F-127 on mouse fibroblast cell line L929. The survival of L929 cells decreased linearly with increasing the concentration of Bi NP in a concentration range of 3-500 µg/ml; the LC50 value was 57 µg/ml. The unique combination of functional properties and moderate toxicity of the laser-synthesized Bi NP makes them a new promising platform for sensitization of multimodal cancer theranostics.


Assuntos
Nanopartículas Metálicas , Animais , Camundongos , Bismuto/toxicidade , Bismuto/química , Linhagem Celular Tumoral , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Nanopartículas/toxicidade , Nanopartículas/química , Nanoestruturas , Neoplasias/metabolismo , Fototerapia/métodos
12.
J Photochem Photobiol B ; 253: 112889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492477

RESUMO

One of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs. Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) methods were used to evaluate the structural properties of these particles. The release behavior of the prepared structures in acidic (pH 5.0) and neutral (pH 7.4) environments based on the ON/OFF approach was also examined. The biocompatibility properties of the particles were evaluated on mouse fibroblast (L929) and anticancer activities on neuroblastoma (SH-SY5Y) cells. The effects of prepared EPI-loaded particles and laser-controlled drug release on ROS production, genotoxicity, and apoptosis were also investigated in SH-SY5Y cells. With the calculated combination index (CI) value, it was shown that the activity of EPI-loaded AuNP@PDOP NPs increased synergistically with the ON/OFF-based approach. The developed combination approach is considered to be remarkable and promising for further evaluation before clinical use.


Assuntos
Indóis , Nanopartículas , Neuroblastoma , Polímeros , Animais , Humanos , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Epirubicina/farmacologia , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química
13.
J Hazard Mater ; 469: 134052, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493625

RESUMO

Globally extensive research into how silver nanoparticles (AgNPs) affect enzyme activity in soils with differing properties has been limited by cost-prohibitive sampling. In this study, customized machine learning (ML) was used to extract data patterns from complex research, with a hit rate of Random Forest > Multiple Imputation by Chained Equations > Decision Tree > K-Nearest Neighbors. Results showed that soil properties played a pivotal role in determining AgNPs' effect on soil enzymes, with the order being pH > organic matter (OM) > soil texture ≈ cation exchange capacity (CEC). Notably, soil enzyme activity was more sensitive to AgNPs in acidic soil (pH < 5.5), while elevated OM content (>1.9 %) attenuated AgNPs toxicity. Compared to soil acidification, reducing soil OM content is more detrimental in exacerbating AgNPs' toxicity and it emerged that clay particles were deemed effective in curbing their toxicity. Meanwhile sand particles played a very different role, and a sandy soil sample at > 40 % of the water holding capacity (WHC), amplified the toxicity of AgNPs. Perturbation mapping of how soil texture alters enzyme activity under AgNPs exposure was generated, where soils with sand (45-65 %), silt (< 22 %), and clay (35-55 %) exhibited even higher probability of positive effects of AgNPs. The average calculation results indicate the sandy clay loam (75.6 %), clay (74.8 %), silt clay (65.8 %), and sandy clay (55.9 %) texture soil demonstrate less AgNPs inhibition effect. The results herein advance the prediction of the effect of AgNPs on soil enzymes globally and determine the soil types that are more sensitive to AgNPs worldwide.


Assuntos
Nanopartículas Metálicas , Solo , Solo/química , Prata/toxicidade , Prata/química , Argila , Areia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
14.
Environ Toxicol Pharmacol ; 107: 104417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493879

RESUMO

The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1ß levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.


Assuntos
Arsênio , Cynara scolymus , Nanopartículas Metálicas , Extratos Vegetais , Camundongos , Animais , Arsênio/metabolismo , Ouro , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/toxicidade , Hipocampo/metabolismo
15.
Aquat Toxicol ; 270: 106883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503038

RESUMO

The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 µg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.


Assuntos
Bivalves , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/análise , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Brânquias
16.
Aquat Toxicol ; 270: 106895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554681

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) in aquatic environments, originating from urban run-off, product use and post-consumer degradation, interact with aquatic organisms through water and sediments. Thorough toxicity assessment requires comprehensive data across all ecosystem compartments especially the benthic zone, which is currently lacking. Moreover, a proper physicochemical characterization of the particles is needed before and during toxicity assessment. In the present work, we used the planarian Schmidtea mediterranea to investigate the effects of TiO2-NPs (5 mg/L and 50 mg/L). Planarians are benthic organisms that play an important role in the food chain as predators. Our study integrated particle characterization with toxicokinetic and toxicodynamic parameters and showed that the uptake of TiO2-NPs of 21 nm occurred through the epidermis and intestine. Epidermal irritation and mucus production occurred immediately after exposure, and TiO2-NPs induced stronger effects in regenerating organisms. More specifically, TiO2-NPs interfered with neuroregeneration, inducing behavioral effects. A delay in the formation of the anterior commissure between the two brain lobes after seven and nine days of exposure to 50 mg/L was observed, probably as a result of a decrease in stem cell proliferation. Our findings underscore the need to incorporate multiple exposure routes in toxicity screenings. Additionally, we highlight the vulnerability of developing organisms and recommend their inclusion in future risk assessment strategies.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Planárias , Poluentes Químicos da Água , Animais , Mediterranea , Ecossistema , Poluentes Químicos da Água/toxicidade , Titânio/química , Nanopartículas/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
17.
Chemosphere ; 354: 141691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484999

RESUMO

Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/toxicidade , Antibacterianos/química , Staphylococcus epidermidis , Bacillus cereus , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
18.
Sci Total Environ ; 927: 171860, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518823

RESUMO

Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Prata , Poluentes do Solo , Solo , Prata/toxicidade , Animais , Poluentes do Solo/análise , Oligoquetos/efeitos dos fármacos , Solo/química , Nanopartículas Metálicas/toxicidade , Nanoestruturas/toxicidade , Invertebrados/efeitos dos fármacos
19.
J Hazard Mater ; 470: 134128, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555673

RESUMO

This study comprehensively deciphered the effect of silver nanoparticles (AgNPs) on anammox flocculent sludge, including nitrogen removal performance, microbial community structure, functional enzyme abundance, antibiotic resistance gene (ARGs) dissemination, and horizontal gene transfer (HGT) mechanisms. After long-term exposure to 0-2.5 mg/L AgNPs for 200 cycles, anammox performance significantly decreased (P < 0.05), while the relative abundances of dominant Ca. Kuenenia and anammox-related enzymes (hzsA, nirK) increased compared to the control (P < 0.05). For antibiotic resistome, ARG abundance hardly changed with 0-0.5 mg/L AgNPs but decreased by approximately 90% with 1.5-2.5 mg/L AgNPs. More importantly, AgNPs effectively inhibited MGE-mediated HGT of ARGs. Additionally, structural equation model (SEM) disclosed the underlying relationship between AgNPs, the antibiotic resistome, and the microbial community. Overall, AgNPs suppressed the anammox-driven nitrogen cycle, regulated the microbial community, and prevented the spread of ARGs in anammox flocs. This study provides a theoretical baseline for an advanced understanding of the ecological roles of nanoparticles and resistance elements in engineered ecosystems.


Assuntos
Resistência Microbiana a Medicamentos , Nanopartículas Metálicas , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Resistência Microbiana a Medicamentos/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Transferência Genética Horizontal , Esgotos/microbiologia , Nitrogênio/química , Nitrogênio/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Anaerobiose , Microbiota/efeitos dos fármacos , Oxirredução
20.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38457263

RESUMO

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Assuntos
Ligas , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Gengiva , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Tiazóis , Titânio , Humanos , Fibroblastos/efeitos dos fármacos , Titânio/toxicidade , Titânio/química , Gengiva/citologia , Gengiva/efeitos dos fármacos , Prata/química , Prata/toxicidade , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ligas/toxicidade , Teste de Materiais , Ligas Dentárias/química , Ligas Dentárias/toxicidade , Microscopia Eletrônica de Varredura , Corantes , Materiais Biocompatíveis/química , Sais de Tetrazólio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...